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Abstract. Group key-exchange protocols allow a set of N parties to 
agree on a shared, secret key by communicating over a public network. A 
number of solutions to this problem have been proposed over the years, 
mostly based on variants of Diffie-Hellman (two-party) key exchange. 
To the best of our knowledge, however, there has been almost no work 
looking at candidate post-quantum group key-exchange protocols. 
Here, we propose a constant-round protocol for unauthenticated group 
key exchange (i.e., with security against a passive eavesdropper) based on 
the hardness of the Ring-LWE problem. By applying the Katz-Yung com- 
piler using any post-quantum signature scheme, we obtain a (scalable) 
protocol for authenticated group key exchange with post-quantum secu- 
rity. Our protocol is constructed by generalizing the Burmester-Desmedt 
protocol to the Ring-LWE setting, which requires addressing several tech- 
nical challenges. 

 
Keywords: Ring learning with errors, Post-quantum cryptography, Group key 
exchange 

1 Introduction 

Protocols for (authenticated) key exchange are among the most fundamental and 
widely used cryptographic primitives. They allow parties communicating over an 
insecure public network to establish a common secret key, called a session key, 
permitting the subsequent use of symmetric-key cryptography for encryption 
and authentication of sensitive data. They can be used to instantiate so-called 
“secure channels” upon which higher-level cryptographic protocols often depend. 

Most work on key exchange, beginning with the classical paper of Diffie and 
Hellman, has focused on two-party key exchange. However, many works have 
also explored extensions to the group setting [21, 29, 15, 30, 5, 6, 25, 14, 12, 13, 11, 

17, 22, 16, 8, 2, 1, 24, 9, 31] in which N parties wish to agree on a common session 
key that they can each then use for encrypted/authenticated communication 
with the rest of the group. 

The recent effort by NIST to evaluate and standardize one or more quantum- 
resistant public-key cryptosystems is entirely focused on digital signatures and 
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two-party key encapsulation/key exchange,1 and there has been an extensive 
amount of research over the past decade focused on designing such schemes. In 
contrast, we are aware of almost no2 work on group key-exchange protocols with 
post-quantum security beyond the observation that a post-quantum group key- 
exchange protocol can be constructed from any post-quantum two-party protocol 
by having a designated group manager run independent two-party protocols with 
the N 1 other parties, and then send a session key of its choice to the other 
parties encrypted/authenticated using each of the resulting keys. Such a solution 
is often considered unacceptable since it is highly asymmetric, requires additional 
coordination, is not contributory, and puts a heavy load on a single party who 
becomes a central point of failure. 

1.1 Our Contributions 

In this work, we propose a constant-round group key-exchange protocol based 
on the hardness of the Ring-LWE problem [27], and hence with (plausible) post- 
quantum security. We focus on constructing an unauthenticated protocol—i.e., 
one secure against a passive eavesdropper—since known techniques such as the 
Katz-Yung compiler [24] can then be applied to obtain an authenticated protocol 
secure against an active attacker. 

The starting point for our work is the two-round group key-exchange pro- 
tocol by Burmester and Desmedt [15, 16, 24], which is based on the decisional 
Diffie-Hellman assumption. Assume a group G of prime order q and a generator 
g ∈ G are fixed and public. The Burmester-Desmedt protocol run by parties 
P0, . . . , PN−1 then works as follows: 

1. In the first round, each party Pi chooses uniform ri Zq and broadcasts 
zi = gri to all other parties. 

2. In the second round, each party Pi broadcasts Xi = (zi+1/zi−i)ri (where the 
parties’ indices are taken modulo N ). 

Each party Pi can then compute its session key ski as 

ski = (zi−1)Nri · XN −1 · XN −2 · · · Xi+N −2. 

One can check that all the keys are equal to the same value gr0 r1 +···+rN −1 r0 . 
In attempting to adapt their protocol to the Ring-LWE setting, we could fix 

a ring Rq and a uniform element a ∈ Rq. Then: 

1. In the first round, each party Pi chooses “small” secret value si ∈ Rq and 
“small” noise term ei ∈ Rq (with the exact distribution being unimportant 
in the present discussion), and broadcasts zi = asi + ei to the other parties. 

 

1 Note that CPA-secure key encapsulation is equivalent to two-round key-exchange 
(with passive security). 

2 The protocol of Ding et al. [19] has no security proof; the work of Boneh et al. [10] 
shows a framework for constructing a group key-exchange protocol with plausible 
post-quantum security but without a concrete instantiation. 
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2. In the second round, each party Pi chooses a second “small” noise term 
eli ∈ Rq and broadcasts Xi = (zi+1 − zi−i) · si + eli. 

Each party can then compute a session key bi as 

bi = N · si · zi−1 + (N − 1) · Xi + (N − 2) · Xi+1 + · · · + Xi+N−2. 

The problem, of course, is that (due to the noise terms) these session keys com- 
puted by the parties will not be equal. They will, however, be “close” to each 
other if the si, ei, eli are all sufficiently small, so we can add an additional 
reconciliation step to ensure that all parties agree on a common key k. 

This gives a protocol that is correct, but proving security (even for a pas- 
sive eavesdropper) is more difficult than in the case of the Burmester-Desmedt 
protocol. Here we informally outline the main difficulties and how we address 
them. First, we note that trying to prove security by direct analogy to the proof 
of security for the Burmester-Desmedt protocol (cf. [24]) fails; in the latter case, 
it is possible to use the fact that, for example, 

(z2/z0)r1 = zr2 −r0 , 

whereas in our setting the analogous relation does not hold. In general, the 
natural proof strategy here is to switch all the {zi} values to uniform elements 
of Rq, and similarly to switch the {Xi} values to uniform subject to thLe constraint 

Unfortunately this cannot be done by simply invoking the Ring-LWE assumption 
O(N ) times; in particular, the first time we try to invoke the assumption, say 
on the pair (z1 = as1 + e1, X1 = (z2 z0) s1 + el

1), we need z2 z0 to be 
uniform—which, in contrast to the analogous requirement in the Burmester- 
Desmedt protocol (for the value z2/z0), is not the case here. Thus, we must 
somehow break the circularity in the mutual dependence of the {zi, XLi} values. 

 
 

i Xi = i(ei+1si − ei−1si) + i el
i. 

Consider now changing the way X0 is chosen: that is, instead of choosing X0 = 

(z1 − zN−1)s0 + el as in the protocol, we instead set X0 = − 
LN −1 Xi + el 

(where el0 is from the same distribution as before). Intuitively, as long as the 
standard deviation of el0 is large enough, these two distributions of X0 should 
be “close” (as they both satisfy i Xi ≈ 0). This, in particular, means that we 
need the distribution of el

0 to be different from the distribution of the eli i>0, 
as the standard deviation of the former needs to be larger than the latter. 

We can indeed show that when we choose el0 from an appropriate distribution 
then the R´enyi divergence between the two distributions of X0, above, is bounded 
by a polynomial. With this switch in the distribution of X0, we have broken the 
circularity and can now use the Ring-LWE assumption to switch the distribution 
of z0 to uniform, followed by the remaining zi, Xi values. 

Unfortunately, bounded R´enyi divergence does not imply statistical closeness. 
However, polynomially bounded R´enyi divergence does imply that any event 

that their sum is approximately 0 (i.e., subject to the constraint that i Xi ≈ 0). 

Toward this end, let us look more carefully at the distribution of 
may write 

i Xi. We 
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occurring with negligible probability when X0 is chosen according to the second 
distribution also occurs with negligible probability when X0 is chosen according 
to the first distribution. For these reasons, we change our security goal from an 
“indistinguishability-based” one (namely, requiring that, given the transcript, 
the real session key is indistinguishable from uniform) to an “unpredictability- 
based” one (namely, given the transcript, it should be infeasible to compute the 
real session key). In the end, though, once the parties agree on an unpredictable 
value k they can hash it to obtain the final session key sk = H(k); this final value 
sk will be indistinguishable from uniform if H is modeled as a random oracle. 

2 Preliminaries 

2.1 Notation 

Let Z be the ring of integers, and let [N ] = {0, 1, . . . , N − 1}. If χ is a probability 
distribution over some set S, then x0, x1, . . . , xf−1 ← χ denotes independently 
sampling each xi from distribution χ. We let Supp(χ) = x : χ(x) = 0 . Given 
an event E, we use E to denote its complement. Let χ(E) denote the probability 
that event E occurs under distribution χ. Given a polynomial pi, let (pi)j denote 
the jth coefficient of pi. Let log(X) denote log2(X), and exp(X) denote eX. 
poly(λ) denotes a polynomial in term of λ. 

2.2 Ring Learning with Errors 

Informally, the (decisional) version of the Ring Learning with Errors (Ring-LWE) 
problem is: for some secret ring element s, distinguish many random “noisy ring 
products” with s from elements drawn uniformly from the ring. More precisely, 
the Ring-LWE problem is parameterized by (R, q, χ, £) as follows: 

1. R = Z[X]/(f (X)) is a ring for some irreducible polynomial f (X) in the 
indeterminate X. In this paper, we restrict to the case of f (X) = Xn + 1 
where n is a power of 2. In later sections, we let R be parameterized by n. 

2. q is a modulus defining the quotient ring Rq := R/qR = Zq[X]/(f (X)). We 
restrict to the case that q is prime and q = 1 mod 2n. 

3. χ = (χs, χe) is a pair of noise distributions over Rq (with χs the secret key 
distribution and χe the error distribution) that are concentrated on “short” 
elements, for an appropriate definition of “short.” 

4. £ is the number of samples provided to the adversary. 

Formally, the Ring-LWE problem is to distinguish between £ samples inde- 
pendently drawn from one of two distributions. The first distribution is generated 
by choosing secret s ← χs and then outputting 

(ai, bi = s · ai + ei) ∈ Rq × Rq 

for i ∈ [£], where each ai is uniform in Rq and each ei ← χe is drawn from 
the error distribution. In the second distribution, each sample (ai, bi) is simply 
uniform in Rq × Rq. 
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Let An,q,χs,χe be the distribution that outputs the Ring-LWE sample (ai, bi = 
s · ai + ei) as above. We denote by AdvRLWE (B) the advantage of algorithm f f 2 
B in distinguishing distributions An,q,χs,χe and U (Rq ). 

RLWE 
n,q,χs,χe,f (t) to be the maximum advantage of any adversary 

running in time t. Note that in later sections, we write Advn,q,χ,f if χ = χs = χe 
for simplicity. 

The Ring-LWE Noise Distribution. The noise distribution χ (here we as- 
sume χs = χe, though this is not necessary) is usually a discrete Gaussian distri- 
bution on Rq

∨ or in our case Rq (see [18] for details of the distinction, especially 
for concrete implementation purposes). Formally, in case of power of two cyclo- 
tomic rings, the discrete Gaussian distribution can be sampled by drawing each 
coefficient independently from the 1-dimensional discrete Gaussian distribution 
over Z with parameter σ, which is supported on x Z : q/2  x  q/2 and 
has density function 

DZq,σ (x) = 
πx2 

e σ2 
 

2 . 
−πx 

 
2.3 Rényi divergence 

L
x
∞

=−∞ e σ2 

The R´enyi divergence (RD) is a measure of closeness for two probability dis- 
tributions. For any two discrete probability distributions P and Q such that 
Supp(P ) ⊆ Supp(Q), we define 

RD2(P I/Q) = 
x∈S

L

upp(P ) 

P (x)2 
. 

Q(x) 

R´enyi divergence has a probability preservation property that can be considered 
the multiplicative analogue of statistical distance. 

Proposition 1. Given discrete distributions P and Q with Supp(P ) ⊆ Supp(Q), 
let E ⊆ Supp(Q) be an arbitrary event. We have 

Q(E) ≥ P (E)2/RD2(P ||Q). 

This property implies that as long as RD2(P Q) is bounded by poly(λ), any 
event E that occurs with negligible probability Q(E) under distribution Q also 
occurs with negligible probability P (E) under distribution P . We refer to [27, 
26] for the formal proof. 

The following theorem bounds the R´enyi divergence between Gaussian dis- 
tributions, which allows the “noise flooding” technique to be used even with 
polynomial modulus q. 

Theorem 2.1 ([7]). Fix m, q, λ ∈ Z, a bound B, and the 1-dimensional discrete 
Gaussian distribution DZq,σ such that B < σ < q. Moreover, let e ∈ Z be such 
that |e| ≤ B. If σ = Ω(B m/ log λ), then 

RD2((e + DZ ,σ)m||Dm  ) ≤ exp(2πm(B/σ)2) = poly(λ), 

where Xm denotes m independent samples from X. 

We define Adv 
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2.4 Generic Key Reconciliation 

In this subsection, we define a generic, one round, two-party key reconciliation 
mechanism which allows both parties to derive the same key from an approxi- 
mately agreed upon ring element. A key reconciliation mechanism KeyRec con- 
sists of two algorithms recMsg and recKey, parameterized by security parameter 
1λ as well as βRec. In this context, Alice and Bob hold “close” values bA and 
bB, respectively, and wish to generate a shared value k. The abstract mechanism 
KeyRec is defined as follows: 

 
1. Bob computes recMsg(bB) which outputs a reconciliation message mrec and 

a final key kB. Bob sends the reconciliation message mrec to Alice. 
2. Once receiving mrec, Alice computes recKey(bA, mrec), which outputs a final 

key kA =∈ {0, 1} . 

 
Correctness. Given bA, bB ∈ Rq, if each coefficient of bB − bA is bounded by 
βRec then it is guaranteed that kA = kB. 

Security. A key reconciliation mechanism KeyRec is secure if the subsequent 
two distribution ensembles are computationally indistinguishable. 
ExeKeyRec(λ): A draw from this helper distribution is performed by initiating the 
key reconciliation protocol among two honest parties and outputting (mrec, kB); 
i.e. the reconciliation message mrec and (Bob’s) key kB of the protocol execution. 

 
We denote by AdvKeyRec( ) the advantage of adversary distinguishing the 

distributions below. 
 rec 

{(m  , kB) | bB ← U(Rq), (m  , kB) ← ExeKeyRec(λ, bB)}λ∈N , 
{(mrec, kl) | bB ← U(Rq), (mrec, kB) ← ExeKeyRec(λ, bB), kl ← Uλ} 

where Uλ denotes the uniform distribution over λ bits. 

λ∈N , 

We define AdvKeyRec(t) to be the maximum advantage of any adversary run- 
ning in time t. 

Key reconciliation mechanisms from the literature. The notion of key 
reconciliation was first introduced by Ding et al. [19] in his work on two-party, 
lattice-based key exchange. It was later used in several works on two-party key 
exchange, including [28, 32, 4]. 

In the key reconciliation mechanisms of Peikert [28], Zhang et al. [32] and 
Alkim et al. [4], the agreed-upon key k = kA = kB is close to each of the original 
values bA, bB held by the parties. When instantiating our group key exchange 
(GKE) protocol with this type of key-reconciliation mechanism, our final GKE 
protocol is contributory. In other cases [3], the agreed-upon key is determined 
by Bob; instantiating our GKE protocol with this type of key-reconciliation 
mechanism yields a non-contributory protocol. 
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3 Group Key Exchange 
A group key-exchange protocol allows a session key to be established among 
N > 2 parties. Following prior work [23, 14, 12, 13], we will use the term group 
key exchange (GKE) to denote a protocol secure against a passive (eavesdrop- 
ping) adversary and will use the term authenticated group key exchange (GAKE) 
to denote a protocol secure against an active adversary, who controls all com- 
munication channels. Fortunately, the work of Katz and Yung [23] presents a 
compiler that takes any GKE protocol and transforms it into a GAKE proto- 
col. The underlying tool required for this transform is any post-quantum signa- 
ture scheme which is strongly unforgeable under adaptive chosen message attack 
(EUF-CMA). We may thus focus our attention on achieving GKE in the remain- 
der of this work. 

In GKE setting, the adversary gets to see a single transcript generated by 
an execution of the protocol. Given the transcript, the adversary must distin- 
guish the real key from a fake key that is generated uniformly at random and 
independently of the transcript. 

Formally, for security parameter λ ∈ N, we define the following distribution: 

ExecuteOH (λ): A draw from this distribution is performed by sampling a clas- 
sical random oracle   from distribution  H , initiating the GKE protocol Π 
among N honest parties with security parameter λ relative to , and outputting 
(trans, sk)—the transcript trans and key sk of the protocol execution. 

 
Consider the following distributions: 

{(trans, sk) | (trans, sk) ← ExecuteOH (λ)}λ∈N, 

{(trans, skl) | (trans, sk) ← ExecuteOH (λ), skl ← Uλ}λ∈N, 

where Uλ denotes the uniform distribution over λ bits. Let AdvGKE,OH ( ) denote 
the advantage of adversary , with classical access to the sampled oracle , 
distinguishing the distributions above. 

To enable a concrete security analysis, we define AdvGKE,OH (t, qO ) to be the 
maximum advantage of any adversary running in time t and making at most qOH 

queries to the random oracle. Security holds even if the adversary sees multiple 
executions by a hybrid argument. 

In the next section we will define our GKE scheme and prove that it satisfies 
the notion of GKE. 

4 A Group Key-Exchange Protocol 
In this section, we present our group key exchange construction, Π, which runs 
key reconciliation protocol KeyRec as a subroutine. Let KeyRec be parametrized 
by βRec. The protocol has two security parameters λ and ρ. λ is the computational 
security parameter. ρ is the statistical parameter. In this setting, N players 
P0, . . . , PN−1 plan to generate a shared session key. The players’ indices are 
taken modulo N . 
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The structure of the protocol is as follows: All parties agree on “close” keys 
b0 ≈ · · · ≈ bN−1 after the second round. Player N − 1 then initiates a key 
reconciliation protocol to allow all users to agree on the same key k = k0 = 

= kN−1. Since we are only able to prove that k is difficult to compute for an 
eavesdropping adversary (but may not be indistinguishable from random), we 
hash k using random oracle H to get the final shared key sk. 

Public setting: Rq = Zq[x]/(xn + 1), a ← U(Rq) . 
 

Round 1: Each player Pi samples si, ei ← χσ1 and broadcasts zi = asi + ei. 
Round 2: Player P0 samples el

0 ← χσ2 and each of the other players Pi 
samples eli ← χσ1 . Each Pi broadcasts Xi = (zi+1 − zi−1)si + eli. 
Key Computation (Round 3): 

- Player PN−1 proceeds as follows: 
1. Samples elN

l 
−1 ← χσ1 and computes bN−1 = zN−2NsN−1 + XN−1 · 

(N − 1) + X0 · (N − 2) + · · · + XN−3 + elN
l 
−1. 

2. Computes (mrec 
N −1 , kN−1) = recMsg(bN−1) and broadcasts mrec . 

3. Obtains session key skN−1 = H(kN−1). 
- Each player Pi (except PN−1) proceeds as follows: 

1. Computes bi = zi−1Nsi +Xi ·(N − 1)+Xi+1 ·(N − 2) +· · · +Xi+N−2. 
2. Computes ki = recKey(bi, mrec 

N −1 ), and obtains session key ski = 
H(ki). 

 
4.1 Correctness 
The following claim states that each party derives the same session key ski, 
with all but negligible probability, as long as χσ1 , χσ2 satisfy the constraint 

(N 2 + 2N ) · √nρ3/2σ2 + ( N
2 

+ 1)σ  + (N − 2)σ  ≤ β , where β is the 
parameter from the KeyRec protocol. 

Theorem 4.1. If the parameters in the group key exchange protocol Π satisfy 
the constraints (N 2 + 2N ) · √nρ3/2σ2 + ( N

2 
+ 1)σ + (N − 2)σ ≤ β , then 

each player derives the same key with probability at least 1 − 2 · 2−ρ. 
 

Proof. We refer to Appendix A for the detailed proof. 

5 Security Proof 

The following theorem shows that protocol Π is a passively secure group key- 
exchange protocol. We remark that we prove security of the protocol for a classi- 
cal attacker only; in particular, we allow the attacker only classical access to  . 
We believe the protocol can be proven secure even against attackers that are 
allowed to make quantum queries to H, but leave proving this to future work. 

 
Theorem 5.1. If the parameters in the group key exchange protocol Π satisfy 
the constraints 2N nλ3/2σ2 + (N − 1)σ1 ≤ βR´enyi and σ2 = Ω(βR´enyi  n/ log λ), 
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Π 2 2 

N −1 ) 

 
 

and if is modeled as a random oracle, then for any algorithm running in 
time t, making at most q queries to the random oracle, we have: 

AdvGKE,OH (t, q) ≤ 2−λ+1 

+ 

1
It( 

 

 
RLWE 
n,q,χσ1 ,3 

 
q 

(t1) + AdvKeyRec(t2) + 
2λ 

 
exp 2πn (βR´enyi/σ2)2 

· 
1 − 2−λ+1 , 

where t1 = t + O(N ) · tring, t2 = t + O(N ) · tring and where tring is defined as the 
(maximum) time required to perform operations in Rq. 
Proof. Consider the joint distribution of (T, sk), where T = ({zi}, {Xi}, mrec  ) is 

the transcript of an execution of the protocol Π, and sk 
N −1 

is the final shared session 
key. The distribution of (T, sk) is denoted as Real. Proceeding via a sequence of 
experiments, we will show that under the Ring-LWE assumption, an adversary 
having negligible success probability in guessing kN−1 as input to the random 
oracle in the Ideal experiment (to be formally defined) also has negligible success 
probability in the Real experiment. 

Furthermore, in Ideal, the input kN−1 to the random oracle is uniformly 
random, which means that the adversary has negl(λ) probability of guessing 
kN−1 in Ideal when q = poly(λ). Finally, we argue that the above is sufficient 
to prove the GKE security of the scheme, because in the random oracle model, 
the output of the random oracle on kN−1 – i.e. the agreed upon key – looks 
uniformly random to an adversary who does not query kN−1. We now proceed 
with the formal proof. 

Let Query be the event that kN−1 is among the adversary A’s random oracle 
queries and denote by Pri[Query] the probability that event Query happens in 
Experiment i. 
Experiment 0. This is the original experiment. In this experiment, the distri- 
bution of (T, sk) is as follows, denoted Real : 

 

 
 
 
 
 
 

Real := 

a ← Rq; ∀i : si, ei ← χσ1 ; 
∀i : zi = asi + ei; 
el

1, . . . , elN −1 ← χσ1 ; el
0 ← χσ2 ; 

∀i : Xi = (zi+1 − zi−1)si + eli; 
elN

l 
−1 ← χσ1 ; : (T, sk) 

bN −1 = zN −2NsN −1 + el
N

l 
−1 + XN −1 · (N − 1)+  



 

 
. 

 
 

X0 · (N − 2) + · · · + XN−3; 
  

 

 
 

Since AdvGKE,OH (t, q) + 1 = Pr0[Query] · 1 + Pr0[Query] · 1 , we have 

AdvGKE,OH (t, q) ≤ Pr0[Query]. (1) 

N · Adv 
) 



 
 

  
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N −1 , kN−1) = recMsg(bN−1); sk = H(kN−1);  

i=0 i=1 i 

i=1 i 


 

  

 
 

In the remainder of the proof, we focus on bounding Pr0[Query]. 

Experiment 1. In this experiment, X0 is replaced by Xl = − 
LN −1 Xi + el . 

The remainder of the experiment is exactly the same as Experiment 0. The 
corresponding distribution of (T, sk) is as follows, denoted Dist1: 

a ← U(Rq); ∀i : si, ei ← χσ1 ; 
∀i : zi = asi + ei; 
el

1, . . . , elN −1 ← χσ1 ; el
0 ← χσ2   

 
Dist1 := 

X0
l = − 

N −1 

 
i=1 

Xi + el
0; i > 0 : Xi = (zi+1 − zi−1)si + eli : (T, sk)  

. 
el

N
l 
−1 ← χσ1 ; 


bN−1 = zN−2NsN−1 + elN

l 
−1 + XN−1 · (N − 1)+ 

 
X0 · (N − 2) + · · · + XN−3; 


T = (z0, . . . , zN−1, X0, . . . , XN−1, mrec  ). 

 

Claim. If 2N 
√

nλ3/2σ2 + (N − 1)σ1 ≤ βR´enyi, we have 
 

 
Pr0[Query] ≤ 

r
Pr1 [Query] · 

exp(2πn(βR´enyi/σ2)2) 
+ 2 

1 − 2−λ+1 

 
 
−λ+1 

 
. (2) 

Proof. Let Error be the difference between the distribution of X0 in Experiment 
0 and the distribution of X0

l in Experiment 1, denoted Error = X0 − X0
l = 

LN −1(siei+1 + siei−1) + 
LN −1 el. It is straightforward to verify that the dis- 

 
 _

as1s0 − asN−1s0 − 
N −1 

 
i=0 

 

(ei+1si + ei−1si) − 
N −1 

 
i=1 

el
i

L  
+ Error + χσ2 , 

and the distribution of X0
l in Experiment 1 is 

_

as1s0 − asN−1s0 − 
N −1 

 
i=0 

 
 

(ei+1si + ei−1si) − 
N −1 

 
i=1 

el
i

L  
+ χσ2 . 

For simplicity, we let brick denote as1s0 − asN−1s0 − 
LN −1(ei+1si + ei−1si) − 

LN −1 el . 
We begin by showing that the absolute value of each coefficient of Error is 

bounded by βR´enyi with all but negligible probability. Then by adding a “bigger” 
error el

0 ← χσ2 , the small difference between distributions brick + Error + χσ2 

(corresponding to Experiment 0) and brick + χσ2 (corresponding to Experiment 
1) can be “washed” away by applying Theorem 2.1. 

tribution of X0 in Experiment 0 is 

i=0 
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i=0 | j | | 
L 

i i+1 i i−1 

π log 
 

/ 

1 

1 √ 

2 

J 
| | 

≤ 

≤ 

∈ 

2
 
 

≤ 
J 

| ·

 || 

/ 

i=1 i 

≤ Pr1[Query] 
 

+ 
2 

] 

 
 

For all coefficient indices j, note that Error = ( N−1(s e + s e ) + 
LN −1 el)j|. Let boundλ denote the event that for all i and all coordinate indices 
j, |(si)j| ≤ cσ1, |(ei)j| ≤ cσ1, |(el

i/=0)j| ≤ cσ1,|(elN
l 
−1)j| ≤ cσ1, and |(el

0)j| ≤ cσ2, 

where c =  2λ  . We denote by boundErr the event that ∀j, |Errorj| ≤ βR´enyi. By 

replacing ρ with λ in√Lemma A.1 and Lemma A.2, we have Pr[boundλ] ≥ 1−2−λ 
3/2 2 −2λ+1 

and Pr[|(siej)v| ≥ nλ σ  | boundλ] ≤ 2 . By Union Bound, we have 
3/2 2 −2λ 

Pr[∀j, |Errorj| ≤ 2N  nλ σ + (N − 1)σ1 | boundλ] ≥ 1 − 2N · 2n2 . Under 
the assumption that 4Nn 2λ and using similar argument as in Equations (11) 
and (12) of Lemma A.2, we conclude that 

Pr[boundErr] ≥ 1 − 2−λ+1. (3) 

For a fixed Error Rq, we note that Error + χσ2 , χσ2 are n-dimensional distri- 
butions.   

Since σ2 = Ω(βR´enyi n/ log λ), assuming that for all j, Errorj βR´enyi, by 
Theorem 2.1, we have 

RD2(Error + χσ ||χσ ) ≤ exp(2πn(βR´enyi/σ2)2) = poly(λ). (4) 

In addition, the remaining part brick of Dist1 is identical to Real. Therefore we 
may view Real in Experiment 0 as a function of a random variable sampled from 
Error + χσ2 and take Dist1 in Experiment 1 as a function of a random variable 
sampled from χσ2 . 

Recall that Query is the event that kN−1 is contained in the set of random 
oracle queries issued by adversary A. Note that Errorj is defined in both Experi- 
ment 0 and Experiment 1. We denote by Pr0[boundErr] (resp. Pr1[boundErr]) the 
probability that event boundErr occurs in Experiment 0 (resp. Experiment 1 ) and 
define Pr0[boundErr], Pr1[boundErr] analogously. Let Reall (resp. Distl

1) denote the 
random variable Real (resp. Dist1), conditioned on the event boundErr. Therefore, 
we have 

 

Pr0[Query] = Pr0[Query|boundErr] · Pr0[boundErr] + Pr0[Query|boundErr] · Pr0[boundErr] 
≤ Pr0[Query|boundErr] + Pr0[boundErr] 
≤ Pr0[Query|boundErr] + 2−λ+1 

≤ Pr1[Query|boundErr] · RD2(Reall||Distl
1) + 2−λ+1 

Pr1[Query boundErr] RD2(D1 χσ ) + 2−λ+1 

≤ 
/

Pr1[Query|boundErr] · exp(2πn(βR´enyi/σ2)2) + 2−λ+1 
s 

exp(2πn(βR´enyi/σ2)2) −λ+1 

≤ 
r

Pr1 [Query] · 
exp(2πn(βR´enyi/σ2)2) 

+ 2 
1 − 2−λ+1 

 
−λ+1, 

where the second and last inequalities follow from (3), the third inequality follows 
from Proposition 1 and the fifth inequality follows from (4). 

Pr [bound 1 Err 
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In Appendix B, we show that 

Pr [Query] ≤ 
(
N · AdvRLWE (t ) + Adv (t ) + 

 q ) , 

which concludes the proof of Theorem 5.1. 

5.1 Parameter Constraints 

Beyond the parameter settings recommended for instantiating Ring-LWE with 
security parameter λ, parameters N, n, σ1, σ2, λ, ρ of the protocol above are also 
required to satisfy the following inequalities: 

 
(N 2 

 
+ 2N ) · 

√
nρ 

 
3/2 

 
σ2 + ( 

N 2 

2  
+ 1)σ1 + (N − 2)σ2 ≤ βRec (Correctness) (5) 

2N 
√

nλ3/2σ2 + (N − 1)σ1 ≤ βR´enyi (Security) (6) 
σ2 = Ω(βR´enyi n/ log λ)  (Security) (7) 

We comment that once the ring, the noise distributions, and the security param- 
eters λ, ρ are fixed, the maximum number of parties is fixed. 
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A Correctness of the Group Key-Exchange Protocol 
Theorem 4.1. If the parameters in the group key exchange protocol Π satisfy 
the constraints (N 2 + 2N ) · √nρ3/2σ2 + ( N

2 
+ 1)σ + (N − 2)σ ≤ β , then 

each player derives the same key with probability at least 1 − 2 · 2−ρ. 

Proof. We begin by introducing the following lemmas to analyze probabilities 
that each coordinate of si, ei, eli, elN

l 
−1, el

0 are “short” for all i, and conditioned 
on the first event, siei is “short”. 
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x 

∞ Z 

2 2 

σ 

2 

← 

1 

i 
 

t=0 

π log 
 

Ln−1 i

 n 

π log 
 

1 1 

i u  j v−u 

1 

cσ1, |(el
i/=0 )j| ≤ cσ1,|(elN

l 
−1 

= 
√

 
e dt ≤ 

 

∗ ∗ 
u=0 v−u 

and (ej)v−u = (ej)v−u if v − u ≥ 0, (ej)v−u = −(ej)v−u+n, otherwise. Thus, 

(si)u(ej)v
∗

−u ≥ 
δ 

≤ 2 exp 

1 1 1 

u=0 

 
 

Lemma A.1. Given si, ei, eli, elN
l 
−1, el

0 for all i as defined above, let boundρ 
denote the event that for all i and all coordinate indices j, |(si)j| ≤ c/σ 1 ,  |(ei)j| ≤ 

  
have Pr[boundρ] ≥ 1 − 2−ρ. 

Proof. Using the fact that erfc(x) = √2 

 
J ∞ e−t2 dt ≤ e−x2 

, we obtain 
 

Pr[|v| ≥ cσ + 1; v ← DZq,σ ] ≤ 2 
x=b

L

cσ+1e 
DZq,σ (x) ≤ 

2 ∞ 
e 

σ cσ 

 
πx2 

 
 

σ2 dx 

 2  
Z ∞ 

−t −c π  
 

Note that there are 3nN coordinates sampled from distribution DZq,σ1 , and n 
c2π/2 

coordinates sampled from distribution DZq,σ2 in total. Assume 3nN +n ≤ e , 
since all the coordinates are sampled independently, we bound Pr[boundρ] as 
follow: 

Pr[boundρ] = 
(
1 − Pr[|v| ≥ cσ1 + 1; v ← DZq,σ1 ]

)3nN 

· 
(
1 − Pr[|el

0| ≥ cσ2 + 1; el
0 D 
2 

 
Zq,σ2 ]

)n 

≥ 1 − (3nN + n)e−c π ≥ 1 − e−c π/2 ≥ 1 − 2−ρ. 

The last inequality follows as c = 
/ 
 2ρ  . 

 
Lemma A.2. Given si, ei, eli, elN

l 
−1, el

0 for all i as defined above, and boundρ as 
defined in Lemma A.1, let productsi ,ej denote the event that, for all coefficient 
indices v, |(siej)v| ≤ √nρ3/2σ2. we have 

Pr[products ,e | boundρ] ≥ 1 − 2n · 2−2ρ. 

Proof. For t ∈ {0, . . . , n − 1}, Let (si)t denote the tth coefficient of si ∈ Rq, 
namely, si = (si)tX . (ej)t is defined analogously. Since we have X + 1 as 

modulo of R, it is easy to see that (siej)v = cvXv, where cv = 
Ln−1(si)u(ej)∗ , 

conditioned on |(si)t| ≤ cσ1 and |(ej)t| ≤ cσ1 (for all i, j, t) where c = 
/ 

2ρ , 
by Hoeffding’s Inequality [20], we derive 

"
1 nL− 1  

 

 

1 
l ( 

−2δ2 
) 

 

 

as each product (s ) (e )∗ in the sum is an independent random variable with 

mean 0 in the range [−c2σ2, c2σ2]. By setting δ = 
√

nρ3/2σ2, we obtain 

Pr[|(siej)v| ≥ 
√

nρ3/2σ2 | boundρ] ≤ 2−2ρ+1. (8) 

 2ρ  
π log 
 

, 
 

√
π (cσ) 

n(2c2σ2)2 

π 

− 

)j| ≤ cσ1, and |(el
0)j| ≤ cσ2, where c = 

. 

Pr[|(siej)v| ≥ δ | boundρ] = Pr 1 
, 
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

 

 

   
+ 

         − | {z
 } 
         

and j=N 
1 

1 

1 

i j 1 

0 0 0  0 . . . −1 1 N −2 N −1 N −2 N −3 N −2 N −3 
l 

N 
−2 

+ (−i − 1)  sjej+1 − sjej−1 + el
j  + N (sN −1eN −2 − siei−1) 

  

s e s e + el 

 

  
. 

   

 

j=i 

 
 

Finally, by Union Bound, 

Pr[products ,e |boundρ] = Pr[∀v : |(siej)v| ≤ 
√

nρ3/2σ2] ≥ 1 − 2n · 2−2ρ. (9) 
 

Now we begin analyzing the chance that not all parties agree on the same 
final key. The correctness of KeyRec guarantees that this group key exchange 
protocol has agreed session key among all parties ∀i, ki = kN−1, if ∀j, the jth 
coefficient of |bN−1 − bi| ≤ βRec. 

For better illustration, we first write X0, . . . , XN−1 in form of linear system 
as follows. X = [X0 X1 X2 · · · XN−1]T 

 
1 0 0  0 . . . 0 −1 

−1 1 0  0 . . . 0 0 

= 
0 −1 1  0 . . . 0 0 
0 0 −1 1 . . . 0 0 

as0s1 
as1s2 
as2s3 
as3s4 

s0e1 − s0eN −1 + el
0 

1 2 − 1 0 1 

s2e3 − s2e1 + el
2 

s3e4 − s3e2 + el
3 .  

 . . .  
. . .  . 

 as s  
s e 

. 
− s e + el  

| 
M
{z } asN 1s0 

| {
S
z } 

sN −1e0 − sN −1eN −2 + eN −1 

E 
(10) 

We denote the matrices above by M , S, E from left to right and have the linear 
system as X = MS +E. By setting Bi = [i−1 i−2 · · · 0 N −1 N −2 · · · i] 
as a N-dimensional vector, we can then write bi as Bi ·X +N (asisi−1 +siei−1) = 
BiMS+B iE+N (asisi−1+siei−1), for i /= N −1 and write bN−1 as BN−1MS+ 
BN−1E + N (asN−1sN−2 + sN−1eN−2) + elN

l 
−1. It is straightforward to see that, 

entries of MS and Nasisi−1 are eliminated through the process of computing 
bN−1 − bi. Thus we get 

 
bN −1 − bi = (BN −1 − Bi) E + N (sN −1eN −2 − siei−1) + el

N
l 

−1 

= (N − i − 1) · 



 L 
sjej+1 − sjej−1 + elj 



 
+ elN

l 
−1 

 
j∈Z∩[0,i−1] 

 


NL−2 

 

 

 
Observe that for an arbitrary i ∈ [N ], there are at most (N 2 + 2N ) terms in 
form of suev, at most N 2/2 terms in form of elw where elw ← χσ , at most N − 2 
terms of el

0, where el
0 ← χσ2 , and one term in form of elN

l 
−1 in any coordinate 

of the sum above. Let productALL denote the event that for all the t e r m√s  in form 
of suev observed above, each coefficient of such term is bounded by nρ3/2σ2. 

   



17  

1 
√  J 

Π 

H
 

 

−
 

 

(
 
) 

Π 
A 

1 n,q,χσ1 ,3 1 KeyRec 2 2λ 

 
 

By Union Bound and by assuming 2n(N 2 + 2N ) ≤ 2ρ, it is straightforward to 
see Pr[productALL|boundρ] ≤ (N 2 + 2N ) · 2n2−2ρ ≤ 2−ρ. 

Let bad be the event that not all parties agree on the same final key. Given 
the constraint (N 2 + 2N ) · √nρ3/2σ2 + ( N

2 
+ 1)σ + (N − 2)σ ≤ β satisfied, 

we have 
1 2 1 2 Rec 

 
  

Pr[bad] = Pr[bad|boundρ] · Pr[boundρ] + Pr[bad|boundρ] · Pr[boundρ] (11) 
≤ Pr[productALL] · 1 + 1 · Pr[boundρ] ≤ 2 · 2−ρ, (12) 

which completes the proof. 

 
B Concluding the Proof of Theorem 5.1 

Theorem 5.1 (Restated). If the parameters in group key exchange protocol Π 
satisfy the constraints that 2N nλ3/2σ2+(N 1)σ1 βR´enyi, σ2 = Ω(βR´enyi  n/ log λ), 
and is modeled as a classical random oracle, then for any algorithm run- 
ning in time t, making at most q queries to the random oracle, the maximum 
advantage of A in breaking GKE security is as follows: 

AdvGKE,OH (t, q) ≤ 2−λ+1 

+ 

1
It( 

 

 
RLWE 
n,q,χσ1 ,3 

 
q 

(t1) + AdvKeyRec(t2) + 
2λ 

 
exp 2πn (βR´enyi/σ2)2 

· 
1 − 2−λ+1 , 

where t1 and t2 equal to t +O(N ) · tring and tring is the time to perform operations 
in Rq. 

Proof. (Continued) Recall that Experiment 0 is the real world experiment. We 
have that AdvGKE,OH (t, q) ≤ Pr0[Query] (see Equation 1), where Query is the 
event that kN−1 is among the adversary ’s random oracle queries and Pri[Query] 
is the probability that event Query happens in Experiment i. 

In Experiment 1, we switched from X0 as sampled in the real world to X0
l = 

− 
LN −1 Xi + el and showed (see Equation 2) that 

i=1 0 

 

Pr0[Query] ≤ 
r

Pr1 [Query] · 

 
exp(2πn(βR´enyi/σ2)2) 

+ 2 
1 − 2−λ+1 

 

 
−λ+1. 

Therefore, to prove the theorem, it remains to show that 

Pr [Query] ≤ 
(
N · AdvRLWE (t ) + Adv (t ) + 

 q ) . 

We do so by considering a sequence of experiments as follows: 
 

Experiment 2. This experiment proceeds exactly the same as Experiment 1, 
except that z0 is generated uniformly at random, instead of being generated as 

N · Adv 
) 
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

  

L 

 
N −1 

RLWE 

− 

(mrec 
N −1 , kN−1) = recMsg(bN−1); sk = H(kN−1);  

q 1 


 

  

 
 

an Ring-LWE instance. The corresponding distribution is as follows, denoted 
Dist2: 

a ← U(Rq); ∀i ≥ 1 : si, ei ← χσ1 ; 
z0 ← U(Rq), ∀i ≥ 1 : zi = asi + ei; 
el

1, . . . , elN −1 ← χσ1 ; el
0 ← χσ2   

 
Dist2 := 

X0
l = − 

N −1 

 
i=1 

Xi + el
0, ∀i ≥ 1 : Xi = (zi+1 − zi−1)si + eli : (T, sk)  

. 
el

N
l 
−1 ← χσ1 ; 


bN−1 = zN−2NsN−1 + elN

l 
−1 + XN−1 · (N − 1)+ 

 
X0 · (N − 2) + · · · + XN−3; 


T = (z0, . . . , zN−1, X0, . . . , XN−1, mrec  ). 

 

Bounding the difference of |Pr2[Query] − Pr1[Query]|: 
Given algorithm A running in time t attacking Π, let B be an algorithm 

running in time t1 that takes as input (a, z0), generates (T, sk) based on distri- 
bution Distl

1 which is identical to Dist1 except for (a, z0) given as input, runs 
A as subroutine and outputs whatever A outputs. It is straightforward to see 
that if (a, z0) is sampled from the Ring-LWE distribution An,q,χσ1 

, then Distl1 

is identical to Dist1, and if (a, z0) is sampled from U(R2), Distl is identical to 
Dist2. Note that t1 is equal to t plus a minor overhead for the simulation of the 
security experiment for A. 

Therefore we conclude that the difference of algorithm A’s success prob- 
ability in Experiment 1 and Experiment 2 is bounded by probability that B 
running in time t1 distinguishes An,q,χσ1 

from U(Rq) given one sample. Since 
RLWE 
n,q,χσ1 ,3 

RLWE 
n,q,χσ1 ,2 

RLWE 
n,q,χσ1 ,1 (t1), for simplicity, we have 

|Pr2[Query] − Pr1[Query]| ≤ Advn,q,χσ1 ,3(t1). (13) 

Recall that in the previous experiment, we switched z0 to be uniformly dis- 
tributed in Rq. In next two experiments, we switch z1, X1 to be elements uni- 
formly distributed in Rq. 

 
Experiment 3. the experiment proceeds exactly the same as Experiment 2, 
except for setting z0 = z2 − r1, X1 = r1s1 + el

1, where r1 is sampled from U(Rq). 
The corresponding distribution is as follows, denoted as Dist3. 
Bounding the difference of |Pr3[Query] − Pr2[Query]|: Since r1 is sampled uni- 
formly, z2 r1 is also a uniformly distributed random value, then we claim that 
Experiment 3 is identical to Experiment 3 up to variable substitution, namely 

 
Pr3[Query] = Pr2[Query]. (14) 

Adv (t1) ≥ Adv (t1) ≥ Adv 
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

  

L 

 
N −1 



  

 

L 

 
  

(
 

B A
 A 

A 

q 

(mrec 
N −1 , kN−1) = recMsg(bN−1); sk = H(kN−1);  

rec 
 N −1 , kN−1) = recMsg(bN−1); sk = H(kN−1); T = (z0, . . . , zN−1, X0, . . . , XN−1, mrec 

q 3 


 

  



 

 

N −1 ) 

 
a ← U(Rq), r1 ← U(Rq); ∀i ≥ 1 : si, ei ← χσ1 ; 
z0 = z2 − r1; ∀i ≥ 1 : zi = asi + ei; 
∀i ≥ 1 : eli ← χσ1 ; el

0 ← χσ2 ;   

 
Dist3 := 

X0
l = − 

N −1 

 
i=1 

Xi + el
0; X1 = r1s1 + el

1; : (T, sk)  
. 

∀i ≥ 2 : Xi = (zi+1 − zi−1)si + eli; elN
l 
−1 ← χσ1 ; 


bN−1 = zN−2NsN−1 + elN

l 
−1 + XN−1 · (N − 1)+ 

 
X0 · (N − 2) + · · · + XN−3; 


T = (z0, . . . , zN−1, X0, . . . , XN−1, mrec  ). 

 

Experiment 4. This experiment proceeds exactly the same as Experiment 3, ex- 
cept that z1, X1 are uniformly distributed in Rq. The corresponding distribution 
is as follows, denoted as Dist4. 

 
a, r1 ← U(Rq); ∀i ≥ 2 : si, ei ← χσ1 ; 
z0 = z2 − r1, z1 ← U(Rq); ∀i ≥ 2 : zi = asi + ei; 
el

2, . . . , elN −1 ← χσ1 ; el
0 ← χσ2 ;   


X0

l = − 
N −1 

 
i=1 

Xi + el
0, X1 ← U(Rq); 

 
Dist4 := ∀i ≥ 2 : Xi = (zi+1 − zi−1)si + eli, : (T, sk) . 

el
N

l 
−1 ← χσ1 ; 

bN −1 = zN −2NsN −1 + el
N

l 
−1 + XN −1 · (N − 1)+   

X0 · (N − 2) + · · · + XN−3; 
  

 

Bounding the difference of |Pr4[Query] − Pr3[Query]|: 
Given an algorithm A running in time t attacking Π, let B be an algorithm 

running in time t1 that takes as input (a, z1), (r1, X1), generates (T, sk) based on 
distribution Distl

3 which is identical to Dist3 except for (a, z1), (r1, X1) given as 
input.  runs  as a subroutine and outputs whatever  outputs. Note that t1 
is equal to t plus a minor overhead for the simulation of the security experiment 
for A. 

It is clear to see that if (a, z1) and (r1, X1) are sampled from the Ring-LWE 
distribution An,q,χσ1 

, then Distl
3 is identical to Dist3. If (a, z1) and (r1, X1) are 

sampled from U(R2), Distl is identical to Dist4. 
Therefore we conclude that the difference of algorithm successful proba- 

bility in winning Experiment 4 and Experiment 3 is bounded by the advantage 
2 

of adversary B running in time t1 in distinguishing An,q,χσ1 
from U(R ) given 

  
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RLWE 

−
 

 

≥ 



 

L 

 

N −1 

T = (z0, . . . , zN−1, X0, . . . , XN−1, mrec 
 

 

 

 
 

N −1 ) 

 
 

two samples. Thus, 

|Pr4[Query] − Pr3[Query]| ≤ Advn,q,χσ1 ,3(t1). (15) 

Experiment 5. This experiment proceeds exactly the same as Experiment 4, 
except that z0 is sampled directly from U(Rq). We leave the formal definition of 
Dist5 implicit for simplicity. 
Bounding the difference of |Pr5[Query] − Pr4[Query]|: It is easy to see that the 
corresponding distribution Dist5 is identical to Dist4 by substituting variable z0 
for z2 − r1. Thus, 

Pr5[Query] = Pr4[Query]. (16) 
 

In the case that N 3, we present the following sequence of experiments 
from Experiment 6 to Experiment 3N 4. For i = 2, 3, . . . , N 2, we define 
three experiments Experiment 3i, Experiment 3i + 1, Experiment 3i + 2. It is 
ensured that in the experiments prior to Experiment 3i, we already switched 
zj, Xj for all 0 ≤ j ≤ i − 1. In Experiment 3i, Experiment 3i + 1 and Experiment 
3i+2, we replace zi and Xi by random elements uniformly distributed in Rq. Ex- 
periment 3i, Experiment 3i+1, Experiment 3i+2 are formally defined as follows: 

 
Experiment 3i. The experiment proceeds exactly the same as Experiment 3i−1, 
except for setting zi−1 = zi+1−ri, Xi = risi+eli, where r1 is sampled from U(Rq). 
The corresponding distribution is as follows, denoted Dist3i 

 
a, ri ← U(Rq); ∀j ≥ i : sj, ej ← χσ1 ; 
z0, . . . , zi−2 ← U(Rq), zi−1 = zi+1 − ri; 
∀j ≥ i : zj = asj + ej; 


eli, . . . , elN −1 ← χσ1 , el

0 ← χσ2 ;  
 
 

Dist3i := 
X0l = − 

N −1 

 
i=1 

Xi + el
0, X1, . . . , Xi−1 ← U(Rq); : (T, sk)  

. 
Xi = risi + eli; ∀j ≥ i : Xj+1 = (zj+2 − zj)sj+1 + elj+1 
el

N
l 
−1 ← χσ1 ; 

bN −1 = zN −2NsN −1 + el
N

l 
−1 + XN −1 · (N − 1)+ 

X0 · (N − 2) + · · · + XN−3; 
(mrec  , kN−1) = recMsg(bN−1); sk = H(kN−1);  

Experiment 3i + 1. This experiment proceeds exactly the same as Experiment 
3i, except that zi, Xi are uniformly distributed in Rq. The corresponding distri- 
bution is as follows, denoted Dist3i+1: 

 

 
 

  

 

 



21  



 

L 

 
 

 

−
 

 

RLWE 

 N −1 

T = (z0, . . . , zN−1, X0, . . . , XN−1, mrec 
 

 

 

 
 

N −1 ) 

 
 

 
a, ri ← U(Rq); ∀j ≥ i + 1 : sj, ej ← χσ1 

z0, . . . , zi−2 ← U(Rq), zi−1 = zi+1 − ri, zi ← U(Rq), 
∀j ≥ i + 1 : zj = asj + ej; 


el

1, . . . , elN −1 ← χσ1 ; el
0 ← χσ2  

 
 

Dist3i+1 := 
X0l = − 

N −1 

 
i=1 

Xi + el
0, X1, . . . , Xi ← U(Rq), : (T, sk)  

. 
∀j ≥ i + 1, Xj = (zj+1 − zj1 )sj + elj ; 
el

N
l 
−1 ← χσ1 ; 

bN −1 = zN −2NsN −1 + el
N

l 
−1 + XN −1 · (N − 1)+ 

X0 · (N − 2) + · · · + XN−3; 
(mrec  , kN−1) = recMsg(bN−1); sk = H(kN−1);  

Experiment 3i + 2. This experiment proceeds exactly the same as Experiment 
3i+1, except that zi−1 is directly sampled from U(Rq). The corresponding distri- 
bution is denoted as Dist3i+2. We leave the formal definition of Dist3i+2 implicit 
for simplicity. 

 
Bounding the difference of |Pr3i[Query]−Pr3i−1[Query]|, |Pr3i+1[Query]−Pr3i[Query]|, 
and |Pr3i+2[Query] − Pr3i+1[Query]| follows exactly the same logic as bound- 
ing the differences of  |Pr3[Query] − Pr2[Query]|, |Pr4[Query] − Pr3[Query]|, and 
|Pr5[Query] − Pr4[Query]|, respectively. Then we have 

 
Pr3i[Query] = Pr3i−1[Query]; (17) 

|Pr3i+1[Query] − Pr3i[Query]| ≤ Advn,q,χσ1 ,3(t1); (18) 

Pr3i+2[Query] = Pr3i+1[Query]; (19) 

Note that in Experiment 3N − 4, the last experiment of the experiment se- 
quence above, we already switched all the zi, Xi up to zN−1, XN−1. We construct 
the next two experiments to switch zN−1, XN−1, bN−1. 
Experiment 3N − 3. The experiment proceeds exactly the same as Experiment 
3N − 4, except that we let zN−2 = r2, XN−1 = r1sN−1 + elN −1, z0 = r1 + r2, 
where r1, r2 are uniformly distributed in Rq. The corresponding distribution is 
as follows, denoted Dist3N−3. 
Bounding the difference of |Pr3N−3[Query] − Pr3N−4[Query]|: 

Since r1, r2 is sampled uniformly, r1 + r2 is also uniformly distributed in Rq. 
Then we claim that Experiment 3N 3 is identical to Experiment 3N 4 up to 
variable substitution, written as 

Pr3N−3[Query] = Pr3N−4[Query]; (20) 

 
 

 

 
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

  

L 

 
N −1 

L 

 

N −1 

q 

A 

(mrec 
N −1 , kN−1) = recMsg(bN−1); sk = H(kN−1);  

rec 
 N −1 , kN−1) = recMsg(bN−1); sk = H(kN−1);  


 

  

 
− 

 

 
(

 

 
a, r1, r2 ← U(Rq), sN−1, eN−1 ← χσ1 ; z0 = r1 + r2, 
z1, . . . , zN−3 ← U(Rq), zN−2 = r2, 
zN −1 = asN −1 + eN −1; el

0 ← χσ2 ; el
N −1 ← χσ1 ; 

  

 
Dist3N−3 := 

X0
l = − 

N −1 

 
i=1 

Xi + el
0, X1, . . . , XN−2 ← U(Rq),  

. 
XN−1 = r1sN−1 + elN −1; elN

l 
−1 ← χσ1 ; : (T, sk) 


bN−1 = r2NsN−1 + elN

l 
−1 + XN−1 · (N − 1)+ 

 
X0 · (N − 2) + · · · + XN−3; 


T = (z0, . . . , zN−1, X0, . . . , XN−1, mrec  ). 

 

Experiment 3N − 2. This experiment proceeds exactly the same as Experi- 
ment 3N − 3, except that zN−1, XN−1, bN−1 are generated from U(Rq). The 
corresponding distribution is as follows, denoted Dist3N−2: 

a ← U(Rq), z0, z1 . . . , zN−2 ← U(Rq), 
zN 1 ← U(Rq); el

0 ← χσ2 ; r1, r2 ← U(Rq) 
 

 
Dist 

 

 
3N −2 

:= 

 
X0

l = − 
N −1 

 
i=1 

Xi + el
0, X1, . . . , XN−1 ← U(Rq) : (T, sk) 

 
. 

bN−1 ← U(Rq); 

T = (z0, . . . , zN−1, X0, . . . , XN−1, mrec  ). 
 

Bounding the difference of |Pr3N−2[Query] − Pr3N−3[Query]|: 
Let brlwe = r2NsN−1 + elN

l 
−1, then bN−1 = brlwe + XN−1 · (N − 1) + X0 · (N − 

2) + · · · + XN−3. As r2 is sampled uniformly at random and N is invertible over 
Rq, r2N is uniformly distributed in Rq. 

Given an algorithm A running in time t attacking group key exchange pro- 
tocol Π, let B be an algorithm that takes as input (a, zN−1), (r1, XN−1), and 
(r2N, brlwe), generates (T, sk) based on distribution Distl

3N −3 which is identical 
to Dist3N−3 except for (a, zN−1), (r1, XN−1), and (r2N, brlwe) given as input. 
B runs A as subroutine and outputs whatever A outputs. Note that running 
time t1 of B equals to t plus a minor overhead for the simulation of the security 
experiment for A. 

It is straightforward to see that if (a, zN−1), (r1, X1), and (r2N, brlwe) are 
sampled from the Ring-LWE distribution An,q,χσ1 

, then Distl
3N −3 is identical 

to Dist3N−3. If (a, zN−1), (r1, XN−1), and (r2N, brlwe) are sampled from U(R2), 
then Distl

3N −3 is identical to Dist3N−2, since when brlwe is sampled uniformly at 
random, brlwe + XN−1 · (N − 1) + X0 · (N − 2) + · · · + XN−3 is also uniformly 
distributed over Rq. 

Therefore we conclude that the difference of algorithm GKE’s success proba- 
bility in Experiment 3N - 2 and Experiment 3N - 3 is bounded by the advantage 
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B
 
 

− { } 

RLWE 

  

L 

N −1 

N 
 

 N −1 ← { } H  N 
−1 

A 
A 

2λ 

1 n,q,χσ1 ,3 1 2 2λ 

 

 
 

of adversary running in time t1 in distinguishing Ring-LWE from (Rq) given 
three samples. Thus, we conclude that 

|Pr3N−2[Query] − Pr3N−3[Query]| ≤ Advn,q,χσ1 ,3(t1). (21) 

Experiment 3N − 1. This experiment proceeds exactly the same as Experiment 
3N 2, except that kN−1 is directly sampled uniformly from 0, 1 λ. Note that 
the corresponding distribution is exactly the distribution Ideal. 

 
a ← U(Rq); z0, . . . , zN−1 ← U(Rq); e0 ← χσ1 ;   

 
 

Ideal := 
X0

l = − 
N −1 

 
i=1 

Xi + el
0, X1, . . . , XN−1 ← U(Rq)  

. 
bN−1 ← U(Rq); (mrec  , kN−1) = recMsg(bN−1) : (T, sk)   

kl 0, 1 λ; sk = (kl ); 


T = (z0, . . . , zN−1, X0
l , . . . , XN−1, mrec 1); 

 

Bounding the difference of |Pr3N−1[Query] − Pr3N−2[Query]|: 
Given transcript T, and bN−1 which is uniformly distributed, using a straight 

forward reduction, we obtain advantage of adversary B running in time t2 in 
distinguishing kN−1 computed by recMsg(bN−1) from a uniform bit string k N

l  
−1 

with length λ is at least |Pr3N−1[Query] − Pr3N−2[Query]|, namely, 

|Pr3N−1[Query] − Pr3N−2[Query]| ≤ AdvKeyRec(t2). (22) 

Note that t2 equals to the running time of adversary attacking the protocol 
Π, plus a minor overhead for simulating experiment for  . 

Finally, since adversary attacking the GKE protocol Π makes at most q 
queries to the random oracle, Pr3N−1[Query] =  q  ∈ negl(λ). Combining Equa- 
tions (13) - (22), we have 

 
Pr [Query] ≤ N · AdvRLWE 

 

 
(t ) + Adv 

 
 

 q  
(t ) + . (23) 

 
The theorem now follows immediately from Equations (1), (2), and (23). 

KeyRec 




